Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Basic Clin Pharmacol Toxicol ; 134(5): 737-749, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477401

RESUMO

Cantharidin (CTD) is a widely used anticancer compound, but its clinical use is mainly limited due to hepatotoxicity. Ginsenoside Rb1 (GRb1) shows potential hepatoprotective effects. Nonetheless, the protective effect and underlying mechanism of GRb1 against CTD-induced hepatotoxicity in mice have not been investigated. This study aims to elucidate the effect and mechanism of GRb1 on CTD-induced hepatotoxicity using network pharmacology and in vivo experiments. Network pharmacology studies have shown that 263 targets were the main mechanisms by which GRb1 alleviates CTD-induced hepatotoxicity. KEGG enrichment analysis revealed that 75 hub genes were mainly enriched in TNF, IL-17 and apoptosis signalling pathways. Molecular docking analysis showed that GRb1 exhibited high affinity with Akt1, Tnf, Il6, Bcl2 and Caspase3. In addition, results from animal studies demonstrated that GRb1 could ameliorate CTD-induced hepatotoxicity by inhibiting protein expression of Caspase-3, Caspase-8, Bcl-2/Bax, GRP78, ATF6, ATF4, CHOP, IRE1α and PERK. This research revealed the mechanism of GRb1 against CTD-induced hepatotoxicity by inhibiting apoptosis and endoplasmic reticulum stress (ERS) and it may provide a scientific rationale for the potential use of GRb1 in the treatment of hepatotoxicity induced by CTD.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Ginsenosídeos , Camundongos , Animais , Cantaridina/toxicidade , Endorribonucleases , Simulação de Acoplamento Molecular , Farmacologia em Rede , Proteínas Serina-Treonina Quinases , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
2.
J Hazard Mater ; 466: 133497, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38278077

RESUMO

The discernment and aversion of noxious gustatory stimuli profoundly influence homeostasis maintenance and survival of fauna. Cantharidin, a purported aphrodisiac, is a monoterpenoid compound secreted by many species of blister beetle, particularly by the Spanish fly, Lytta vesicatoria. Although the various advantageous functions of cantharidin have been described, its taste analysis and toxic properties in animalshave been rarely explored. Our study using Drosophila melanogaster examines the taste properties of cantharidin along with its potential hazardous effect in the internal organs of animals. Here, we find that cantharidin activates bitter taste receptors. Our findings show that specific ionotropic receptors (IR7g, IR51b, and IR94f) in labellar bitter-sensing neurons, along with co-receptors IR25a and IR76b, are responsible for detecting cantharidin. By introducing the IR7g and IR51b in sweet and bitter neurons, naturally expressing IR76b and IR25a, we show that these genes are sufficient for cantharidin perception. Moreover, we witness the deleterious ramifications of cantharidin on survival and visceral integrities, shedding light on its hazardous effect.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Cantaridina/toxicidade , Paladar/genética , Percepção Gustatória/fisiologia
3.
Reprod Toxicol ; 123: 108520, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056682

RESUMO

Cantharidin (CTD) is a chemical constituent derived from Mylabris and has good antitumor effects, but its clinical use is restricted by its inherent toxicity. However, few researches have reported its reproductive toxicity and mechanisms. This study aims to assess CTD's toxicity on mouse testes and the protective effect of Astragalus polysaccharides (APS). Briefly, biochemical analysis, histopathology, transmission electron microscopy, immunohistochemistry, and Western blotting were used to evaluate the oxidative damage of mouse testicular tissue after exposure to CTD and treatment by APS. Our research suggests a dramatic decrease in testicular index and serum testosterone levels after CTD exposure. The testis showed obvious oxidative damage accompanied by an increase in mitochondrial autophagy, the Nfr2-Keap1 pathway was inhibited, and the blood-testis barrier was destroyed. Notably, these changes were significantly improved after APS treatment. The internal mechanisms of APS ameliorate CTD-induced testicular oxidative damage in mice may be closely connected to regulatory the Nrf2-Keap1 signaling pathway, restraining autophagy, and repairing the blood-testis barrier, providing theoretical support for further study on the reproductive toxicity mechanism of CTD and clinical treatments to ameliorate it.


Assuntos
Cantaridina , Testículo , Masculino , Camundongos , Animais , Testículo/metabolismo , Cantaridina/toxicidade , Cantaridina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Autofagia , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo
4.
Toxicol Appl Pharmacol ; 465: 116450, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36907384

RESUMO

Cantharidin (CTD), extracted from the traditional Chinese medicine mylabris, has shown significant curative effects against a variety of tumors, but its clinical application is limited by its high toxicity. Studies have revealed that CTD can cause toxicity in the kidneys; however, the underlying molecular mechanisms remain unclear. In this study, we investigated the toxic effects in mouse kidneys following CTD treatment by pathological and ultrastructure observations, biochemical index detection, and transcriptomics, and explored the underlying molecular mechanisms by RNA sequencing (RNA-seq). The results showed that after CTD exposure, the kidneys had different degrees of pathological damage, altered uric acid and creatinine levels in serum, and the antioxidant indexes in tissues were significantly increased. These changes were more pronounced at medium and high doses of CTD. RNA-seq analysis revealed 674 differentially expressed genes compared with the control group, of which 131 were upregulated and 543 were downregulated. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that many differentially expressed genes were closely related to the stress response, the CIDE protein family, and the transporter superfamily, as well as the MAPK, AMPK, and HIF-1 pathways. The reliability of the RNA-seq results was verified by qRT-PCR of the six target genes. These findings offer insight into the molecular mechanisms of renal toxicity caused by CTD and provide an important theoretical basis for the clinical treatment of CTD-induced nephrotoxicity.


Assuntos
Cantaridina , Transcriptoma , Camundongos , Animais , Cantaridina/toxicidade , Reprodutibilidade dos Testes , Perfilação da Expressão Gênica , Análise de Sequência de RNA
5.
Food Chem Toxicol ; 171: 113541, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36464109

RESUMO

Cantharidin (CTD) is a principal bioactive component of traditional Chinese medicine Mylabris used in cancer treatment. However, CTD clinical application is limited due to nephrotoxicity, and the mechanism is unknown. The present study used widely-targeted metabolomics, network pharmacology, and cell experiments to investigate the nephrotoxicity mechanism after CTD exposure. In mice exposed to CTD, serum creatinine and urea nitrogen levels increased with renal injury. Then, 74 differential metabolites were detected, including 51 up-regulated and 23 down-regulated metabolites classified as amino acids, small peptides, fatty acyl, arachidonic acid metabolite, organic acid, and nucleotides. Sixteen metabolic pathways including tyrosine, sulfur, and pyrimidine metabolism were all disrupted in the kidney. Furthermore, network pharmacology revealed that 258 metabolic targets, and pathway enrichment indicated that CTD could activate oxidative phosphorylation and oxidative stress (OS). Subsequently, HK-2 cell experiments demonstrated that CTD could reduce superoxide dismutase while increasing malondialdehyde levels. In conclusion, after CTD exposure, biometabolic processes may be disrupted with renal injury in mice, resulting in oxidative phosphorylation and OS.


Assuntos
Cantaridina , Farmacologia em Rede , Camundongos , Animais , Cantaridina/toxicidade , Metabolômica/métodos , Rim , Medicina Tradicional Chinesa
6.
J Econ Entomol ; 115(5): 1551-1556, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36073195

RESUMO

Plutella xylostella (L.) (Lepidoptera: Plutellidae) is one of the most destructive pests of Brassicaceae vegetables. Cantharidin is an insect-derived defensive toxin, which has been reported to have toxicity to a variety of pests and especially lepidopteran pests. Although the toxicity of cantharidin on P. xylostella has been demonstrated, there is little information available on the specific detoxification response of P. xylostella against cantharidin. This study investigates the enzymatic response (including serine/threonine phosphatases [PSPs], carboxylesterases [CarEs], glutathione-S-transferases [GSTs], and cytochrome P450 monooxygenases [P450]) in P. xylostella to the sublethal and low lethal concentrations of cantharidin (LC10 and LC25). Results showed that the inhibitory activity of PSPs was increased and then decreased in vivo, while PSPs activity could be almost completely inhibited in vitro. Interestingly, the activities of detoxification enzymes (GST, CarE, and P450) in P. xylostella displayed a trend of decreasing and then increasing after exposure to the two concentrations of cantharidin. Notably, the increase in P450 enzyme activity was the most significant. The increasing trend of detoxification enzyme activity was congruent with the recovery trend of PSPs activity. This study contributes to our understanding of the detoxification mechanism of cantharidin in P. xylostella and helps in the further development of biogenic agents.


Assuntos
Inseticidas , Lepidópteros , Mariposas , Animais , Cantaridina/toxicidade , Hidrolases de Éster Carboxílico , Sistema Enzimático do Citocromo P-450 , Glutationa , Inseticidas/toxicidade , Larva , Monoéster Fosfórico Hidrolases , Serina , Treonina , Transferases
7.
Fish Shellfish Immunol ; 123: 20-35, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35218974

RESUMO

Cantharidin is a toxic vesicant terpene used in folk and traditional medicine due to its various therapeutic effects. Since there are no previous data on the effect of cantharidin in fish, this study aimed to investigate the in vitro related-inflammatory effects of cantharidin in gilthead seabream (Sparus aurata L.) head-kidney leucocytes (HKLs). In the first experiment, the HKLs were incubated with 0, 5 and 10 µg mL-1 of cantharidin for 24 h to delimit its possible toxic effects. In a second experiment, leucocytes were incubated with ranging concentrations from 0 to 10 µg mL-1 for 3, 6, or 12 h. Cell viability was higher in acidophilic granulocytes than in monocytes/macrophages and lymphocytes. Cantharidin caused apoptosis as was evidenced by transmission electron microscopy. In addition, cantharidin produced a time- and dose-dependent decrease of respiratory burst and phagocytic activities in HKLs, while their peroxidase activity was increased at 24 h of incubation with 5 and 10 µg mL-1 of cantharidin. Different changes in the gene expression were observed after incubation with cantharidin. While the gene expression of tnfa, il1b and crel was up-regulated in HKLs, the nfkb1 and igmh genes were down-regulated in comparison to the expression found in control HKLs. Present results offer a first view of the possible effects and action mechanisms of cantharidin in HKLs, as well as its implication in the inflammatory process, which could be of interest not only for basic research but also in the aquaculture sector.


Assuntos
Dourada , Animais , Cantaridina/metabolismo , Cantaridina/toxicidade , Rim Cefálico , Rim , Leucócitos , Dourada/metabolismo
8.
Pak J Pharm Sci ; 35(6(Special)): 1827-1834, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36861250

RESUMO

Cantharidin is a natural compound with cardiotoxicity. Cellular senescence and senescence-associated secretory phenotype (SASP) are implicated in chemotherapy-associated cardiotoxicity. We here investigated how cantharidin induced cardiomyocyte senescence. H9c2 cells were treated with cantharidin. Senescence, mitochondrial functions, SASP, NOD-like receptor thermal protein domain associated protein 3 (NLRP3) signaling and AMP-activated protein kinase (AMPK) phosphorylation were examined. Cantharidin inhibited viability and increased expression of senescence-associated ß--galactosidase (SA-ß-Gal), p16 and p21 in H9c2 cells, suggesting occurrence of senescence. Cantharidin impaired mitochondrial functions evidenced by reduction in basal respiration, ATP levels and spare respiratory capacity. Cantharidin also decreased mitochondrial DNA copy number and down-regulated mRNA levels of cytochrome c oxidase-I, -II and -III. Moreover, cantharidin suppressed activity of mitochondria complex-I and -II. Examinations of SASP showed that cantharidin promoted expression and secretion of SASP cytokines interleukin-1ß-, -6 and -8 and tumor necrosis factor-α, associated with activation of NLRP3/caspase-1 pathway. Finally, cantharidin suppressed AMPK phosphorylation. AMPK activator GSK621 abrogated the up-regulation of SA-ß--Gal, p16 and p21 and counteracted the activation of NLRP3 and caspase-1 in cantharidin-challenged H9c2 cells. In conclusion, cantharidin stimulated senescence and SASP in cardiomyocytes through activation of NLRP3 inflammasome and inhibition of AMPK, providing novel molecular insights into cantharidin-induced cardiotoxicity.


Assuntos
Proteínas Quinases Ativadas por AMP , Miócitos Cardíacos , Humanos , Cantaridina/toxicidade , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Cardiotoxicidade , Caspases
9.
J Appl Toxicol ; 42(6): 970-980, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34866203

RESUMO

Cantharidin (CTD) is an effective antitumor agent. However, it exhibits significant hepatotoxicity, the mechanism of which remains unclear. In this study, biochemical and histopathological analyses complemented with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS)-based targeted metabolomic analysis of bile acids (BAs) were employed to investigate CTD-induced hepatotoxicity in rats. Sixteen male and female Sprague-Dawley rats were randomly divided into two groups: control and CTD (1.0 mg/kg) groups. Serum and liver samples were collected after 28 days of intervention. Biochemical, histopathological, and BA metabolomic analyses were performed for all samples. Further, the key biomarkers of CTD-induced hepatotoxicity were identified via multivariate and metabolic pathway analyses. In addition, metabolite-gene-enzyme network and Kyoto Encyclopedia of Genes and Genomes pathway analyses were used to identify the signaling pathways related to CTD-induced hepatotoxicity. The results revealed significantly increased levels of biochemical indices (alanine aminotransferase, aspartate aminotransferase, and total bile acid). Histopathological analysis revealed that the hepatocytes were damaged. Further, 20 endogenous BAs were quantitated via UHPLC-MS/MS, and multivariate and metabolic pathway analyses of BAs revealed that hyocholic acid, cholic acid, and chenodeoxycholic acid were the key biomarkers of CTD-induced hepatotoxicity. Meanwhile, primary and secondary BA biosynthesis and taurine and hypotaurine metabolism were found to be associated with the mechanism by which CTD induced hepatotoxicity in rats. This study provides useful insights for research on the mechanism of CTD-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Ácidos e Sais Biliares/metabolismo , Biomarcadores , Cantaridina/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/patologia , Cromatografia Líquida de Alta Pressão/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Feminino , Fígado , Masculino , Metabolômica/métodos , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem/métodos
10.
BMC Genomics ; 22(1): 808, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749651

RESUMO

BACKGROUND: Meloidae (blister beetles) are known to synthetize cantharidin (CA), a toxic and defensive terpene mainly stored in male accessory glands (MAG) and emitted outward through reflex-bleeding. Recent progresses in understanding CA biosynthesis and production organ(s) in Meloidae have been made, but the way in which self-protection is achieved from the hazardous accumulation and release of CA in blister beetles has been experimentally neglected. To provide hints on this pending question, a comparative de novo assembly transcriptomic approach was performed by targeting two tissues where CA is largely accumulated and regularly circulates in Meloidae: the male reproductive tract (MRT) and the haemolymph. Differential gene expression profiles in these tissues were examined in two blister beetle species, Lydus trimaculatus (Fabricius, 1775) (tribe Lyttini) and Mylabris variabilis (Pallas, 1781) (tribe Mylabrini). Upregulated transcripts were compared between the two species to identify conserved genes possibly involved in CA detoxification and transport. RESULTS: Based on our results, we hypothesize that, to avoid auto-intoxication, ABC, MFS or other solute transporters might sequester purported glycosylated CA precursors into MAG, and lipocalins could bind CA and mitigate its reactivity when released into the haemolymph during the autohaemorrhaging response. We also found an over-representation in haemolymph of protein-domains related to coagulation and integument repairing mechanisms that likely reflects the need to limit fluid loss during reflex-bleeding. CONCLUSIONS: The de novo assembled transcriptomes of L. trimaculatus and M. variabilis here provided represent valuable genetic resources to further explore the mechanisms employed to cope with toxicity of CA in blister beetle tissues. These, if revealed, might help conceiving safe and effective drug-delivery approaches to enhance the use of CA in medicine.


Assuntos
Cantaridina , Besouros , Animais , Cantaridina/toxicidade , Besouros/genética , Genitália Masculina , Hemolinfa , Masculino , Transcriptoma
11.
Biochem Biophys Res Commun ; 553: 141-147, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33770579

RESUMO

Cantharidin is a potent anti-cancer drug and is known to exert its cytotoxic effects in several cancer cell lines. Although we have ample knowledge about its mode of action, we still know a little about cantharidin associated drug resistance mechanisms which dictates the efficacy and cytotoxic potential of this drug. In this direction, in the present study we employed Sacharomyces cerevisiae as a model organism and screened mutants of pleiotropic drug resistance network of genes for their susceptibility to cantharidin. We show that growth of pdr1Δ and pdr1Δpdr3Δ was severely reduced in presence of cantharidin whereas that of pdr3Δ remain unaffected when compared to wildtype. Loss of one of the PDR1 target genes PDR5, encoding an ABC membrane efflux pump, rendered the cells hypersensitive whereas overexpression of it conferred resistance. Additionally, cantharidin induced the upregulation of both PDR1 and PDR5 genes. Interestingly, pdr1Δpdr5Δ double deletion mutants were hypersensitive to cantharidin showing a synergistic effect in its cellular detoxification. Furthermore, transcriptional activation of PDR5 post cantharidin treatment was majorly dependent on the presence of Pdr1 and less significantly of Pdr3 transcription factors. Altogether our findings suggest that Pdr1 acts to increase cantharidin resistance by elevating the level of Pdr5 which serves as a major detoxification safeguard under CAN stress.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Cantaridina/farmacologia , Farmacorresistência Fúngica/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/genética , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Cantaridina/toxicidade , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Farmacorresistência Fúngica/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Inativação Metabólica/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacos
12.
Curr Protoc ; 1(2): e49, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33600079

RESUMO

The cantharidin-induced skin blister is a simple model for investigating cell migration and inflammatory mediator production at a site of inflammation. Application of cantharidin solution to the ear pinna results in formation of a blister with cell influx and induction of inflammatory mediators at the skin site, as well as local swelling of the ear pinna. The model can be used for investigating anti-inflammatory compounds, such as dexamethasone, and for preclinical drug discovery research, especially in areas where neutrophilic inflammation plays a role in disease pathophysiology. The cantharidin blister model is one of very few translational models described in humans, and the mechanism of inflammation induction is comparable in mice and man. In human studies, the cantharidin blister assay has been used to assess the effects of potential new therapies in early-stage clinical studies. © 2021 Novartis AG. Basic Protocol 1: Application of cantharidin to induce ear inflammation Basic Protocol 2: Assessment of ear edema Basic Protocol 3: Assessment of inflammatory mediators in ear tissue Basic Protocol 4: Histological assessment of ear tissue.


Assuntos
Vesícula , Cantaridina , Anti-Inflamatórios , Vesícula/induzido quimicamente , Cantaridina/toxicidade , Humanos , Inflamação/induzido quimicamente , Pele
13.
Food Chem Toxicol ; 146: 111845, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33152469

RESUMO

Cantharidin (CTD) is the major bioactive compound in Mylabris and has been shown to exhibit antitumor activity. However, its clinical application is relatively limited due to its potential toxic effects, especially nephrotoxicity. In this study, a UHPLC-QE/MS based metabolomics approach combined with network pharmacology was used to investigate the mechanism of CTD-induced nephrotoxicity in HK-2 cells. A total of 76 potential biomarkers and 28 disturbed metabolic pathways were identified in HK-2 cells exposed to CTD. And apoptotic protein expression levels of Caspase 3 and Bax/Bcl-2 ratio were increased in HK-2 cells exposed to CTD. In addition, combined with integrative network pharmacology analysis, the results demonstrated that CTD inhibits the glycerophospholipid and sphingolipid pathways, phosphatidylethanolamine, phosphatidylcholine, MAPK3, and PLD2. These may represent potential diagnostic markers and therapeutic targets, and may also lead to a strategy for reducing CTD-induced toxicity in the clinic.


Assuntos
Cantaridina/toxicidade , Metabolômica , Biomarcadores , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Túbulos Renais Proximais/citologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Análise de Componente Principal , Conformação Proteica , Mapas de Interação de Proteínas
14.
J Appl Toxicol ; 40(12): 1622-1635, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32638414

RESUMO

Cantharidin (CTD), an important active compound derived from the traditional Chinese medicine Mylabris (also called Banmao), has been used in the treatment of diseases such as tumors and dermatosis. However, Mylabris has been shown to induce hepatotoxicity in clinical practice and animal experiments, limiting its use. Further, a detailed mechanism underlying CTD-induced hepatotoxicity has not been determined. In the present study, we aimed to explore the effect of endoplasmic reticulum stress (ERS), autophagy, and apoptosis on CTD-induced hepatotoxicity. We found that CTD could inhibit the proliferation of LO2 cells; increase alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and malondialdehyde levels; and reduce glutathione peroxidase and superoxide dismutase activities. Western blotting showed that low concentrations of CTD induced the expressions of ERS-related proteins [GRP78, ATF4, PERK, p-PERK, XBP1-1 s, and CHOP], but high concentrations of CTD inhibited their expressions. Furthermore, high concentrations of CTD activated autophagy (LC3, Beclin-1, Atg3, Atg4A, Atg4B, and Atg7), induced the expressions of apoptotic proteins (Bax/Bcl-2 and caspase-3), and increased LO2 toxicity. Taken together, these results indicated that CTD can induce LO2 cytotoxicity by inhibiting ERS and inducing autophagy and apoptosis, which provides a scientific basis for CTD-induced hepatotoxicity.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cantaridina/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fígado/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Chaperona BiP do Retículo Endoplasmático , Humanos , Fígado/metabolismo , Fígado/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais
15.
J Appl Toxicol ; 40(11): 1526-1533, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32627230

RESUMO

Cantharidin is of high medicinal value but has strong toxicity. Nowadays, multiple research has focused on the mechanism of its antitumor activity while research on toxicological profiles associated with cantharidin poisoning is still limited. Its hepatotoxicity has attracted attention recently for the crucial role of the liver in detoxification. Here, we aim to find a potential mechanism for cantharidin-induced acute hepatotoxicity with a view to assisting subsequent research or clinical use or detoxification. Twenty-one male Sprague-Dawley rats were randomly divided into control, low-dose (1.34 mg/kg) and high-dose (2.67 mg/kg) cantharidin exposure groups. We used hematoxylin-eosin to observe pathological changes and used immunofluorescent staining, western blotting and real-time quantitative polymerase chain reaction to detect the expression of the markers. The main pathological changes in livers of cantharidin-treated rats were necrosis, inflammatory infiltration and hemorrhage. We found coexpression of tumor necrosis factor alpha (TNF-α), IkappaB kinase-alpha (IKK-α) and caspase3 by immunofluorescent staining in livers of cantharidin-treated rats. Compared with the control, the levels of TNF-α, IKK-α and caspase3 increased significantly in the experimental groups (P < .05). The ratio of B-cell lymphoma-2 (Bcl-2)/Bax increased in the low-dose group but decreased in the high-dose group (P < .05). Cantharidin exposure raised IKK-α mRNA and caspase3 mRNA levels (P < .05). In conclusion, the participation of TNF-α, IKK-α, Bcl-2, Bax and caspase3 uncovered a novel mechanism underlying cantharidin-induced acute hepatotoxicity, and the mechanism needs to be studied further.


Assuntos
Cantaridina/toxicidade , Caspase 3/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Quinase I-kappa B/metabolismo , Fígado/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Caspase 3/genética , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Quinase I-kappa B/genética , Fígado/enzimologia , Fígado/patologia , Masculino , Necrose , Ratos Sprague-Dawley , Transdução de Sinais
16.
Toxicol Lett ; 333: 49-61, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32726682

RESUMO

Hepatotoxicity induced by Mylabris has been reported in both clinical and animal experiments. Cantharidin (CTD), the main active compound of Mylabris was responsible for the hepatotoxicity, which aroused widespread concern. However, the mechanism of CTD hepatotoxicity remained unclear. In this study, LO2 cells were exposed to two doses of CTD (6.25 and 25 µM) for 12 h, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were measured. The metabolites in LO2 cells were profiled by LC-MS. Partial least squares discriminant analysis and orthogonal partial least squares discriminant analysis were used for screening potential biomarkers. The MetPA software was used for clustering and pathway analysis. Network pharmacology was used to predict the genes acted with potential biomarkers. Compared with the control group, the levels of ALT, AST, and LDH was significantly increased after CTD treatment. A total of 46 potential biomarkers for hepatotoxicity induced by CTD were identified. And downregulated potential biomarkers reflected the inhibitory effects of CTD toxicity on metabolism of LO2. Moreover, CTD-induced liver toxicity of LO2 cells is mainly related to three pathways: cysteine and methionine metabolism; glutathione metabolism; and glycine, serine, and threonine metabolism. Furtherly, the mRNA expression of CES2, DNMT1, NOS1, NOS3, S1PR2, and CES1 screened by network pharmacology were regulated by CTD. These studies provide valuable mechanistic insights into CTD-associated hepatotoxicity that will aid in the development of therapeutic prevention and treatment options for this liver disease.


Assuntos
Cantaridina/toxicidade , Doença Hepática Induzida por Substâncias e Drogas , Hepatócitos/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Metabolômica/métodos , Estresse Oxidativo/efeitos dos fármacos , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Cromatografia Líquida/métodos , Relação Dose-Resposta a Droga , Hepatócitos/enzimologia , Hepatócitos/patologia , Humanos , Espectrometria de Massas/métodos , Metabolômica/instrumentação
17.
J Appl Toxicol ; 40(11): 1491-1497, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32618016

RESUMO

The cardiotoxicity of cantharidin has been well characterized, but the understanding of the underlying mechanism(s) is incomplete. To more fully understand the differentially expressed genes (DEGs) in cantharidin-induced myocardial injury, Sprague-Dawley rats were exposed to cantharidin (1.34 mg/kg or 2.67 mg/kg) for 24 h and then the heart was sampled for pathologic changes analysis and RNA-sequencing-based transcriptomic profiling. In addition, serum troponin T (TN-T) levels were also tested using the enzyme-linked immunosorbent assay method. The results showed that cantharidin could cause myocardial damage and elevated serum TN-T levels. The genes with a fold change ≥2 were considered as DEGs and we found 38 DEGs that were mainly enriched in eight pathways revealed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The cellular component of gene ontology analysis showed that the DEGs were mostly enriched in the extracellular matrix. In conclusion, our present study demonstrated that cantharidin induces myocardial injury by multiple modulatory mechanisms, which provide new insights for further study of the pathophysiologic mechanism of cantharidin-induced myocardial injury.


Assuntos
Cantaridina/toxicidade , Perfilação da Expressão Gênica , Cardiopatias/induzido quimicamente , Miocárdio/metabolismo , RNA-Seq , Transcriptoma , Animais , Cardiotoxicidade , Redes Reguladoras de Genes , Cardiopatias/genética , Cardiopatias/metabolismo , Cardiopatias/patologia , Masculino , Miocárdio/patologia , Ratos Sprague-Dawley , Transdução de Sinais/genética , Troponina T/sangue
18.
J Appl Toxicol ; 40(9): 1259-1271, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32468647

RESUMO

Cantharidin (CTD), a compound secreted from Mylabris species, exhibits strong antitumor properties; however, hepatotoxicity restricts its clinical application. The mechanism by which CTD induces toxicity remains unclear. In the present study, the hepatotoxicity of CTD in the rat was investigated using a metabolomic approach combined with conventional pathology methods. A total of 30 rats were intragastrically treated with two doses of CTD (0.75 and 1.5 mg/kg) for 15 days to evaluate hepatotoxicity. Serum and liver samples were collected for biochemical dynamics analyses, histopathological examination and metabolomic analysis. It was found that liver index and serum biochemical indices were significantly increased. Furthermore, the pathology results showed that hepatocytes and subcellular organelles were damaged. Metabolomics analysis found 4 biomarkers in serum and 15 in the liver that were associated with CTD-induced hepatotoxicity. In addition, these were responsible for CTD hepatotoxicity by glycerophospholipid metabolism, sphingolipid metabolism, and steroid hormone biosynthesis. In conclusion, conventional pathology and metabolomics for exploring hepatotoxicity can provide useful information about the safety and potential risks of CTD.


Assuntos
Biomarcadores/sangue , Cantaridina/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Cromatografia Líquida de Alta Pressão/métodos , Hepatócitos/efeitos dos fármacos , Metabolômica/métodos , Animais , Besouros/química , Relação Dose-Resposta a Droga , Feminino , Masculino , Modelos Animais , Ratos , Ratos Sprague-Dawley
19.
Phytomedicine ; 69: 153197, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32146298

RESUMO

BACKGOUND: Ginsenoside Rb1, the main active constituent of Panax ginseng, displays significant anti-inflammatory activity, although the mechanism has not been clearly unraveled. In this study, Rb1's mechanism of anti-inflammatory effects were investigated. METHODS: The flow cytometry and enzyme-linked immunosorbent assay (ELISA) were empolyed to detect pro-inflammatory cytokines release. The related protein and gene expression was investigated by western blotting and qRT-PCR. The dimerization of TLR4 was measured by co-immunoprecipitation and molecular docking assays. Cellular thermal shift assay was used for the determination of the binding of Rb1 and TLR4. For animal moldels, LPS- or cantharidin-induced acute kidney injury, LPS-induced septic death, and dimethyl benzene-induced ear edema were employed to investigate Rb1's anti-inflammatory activity in vivo. RESULTS: Rb1 significantly decreased inflammatory cytokines release in LPS-stimulated RAW264.7 cells and BMDMs, as well as COX-2 and iNOS amounts. Rb1 reduced LPS-associated calcium influx, ROS production, and NO generation. The NF-κB and MAPK axes participated in Rb1's anti-inflammatory effects. Molecular docking simulation indicated Rb1 bound to TLR4 to prevent TLR4 dimerization, as confirmed by co-immunoprecipitation and cellular thermal shift assay. Furthermore, MyD88 recruitment and TAK1 expression were altered by reduced TLR4 dimerization, indicating the TLR4-MyD88-NF-κB/MAPK pathways contributed to Rb1's anti-inflammatory process. In animal models, Rb1 markedly alleviated LPS- or cantharidin-induced acute kidney injury, rescued LPS-induced septic mice from death, and inhibited dimethyl benzene-induced mouse ear edema. CONCLUSION: Overall, these findings demonstrate Rb1 exhibits marked anti-inflammatory effects, suggesting Rb1 represents an optimal molecule for treating inflammatory diseases.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Ginsenosídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/química , Cantaridina/toxicidade , Ginsenosídeos/química , Células HEK293 , Humanos , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Multimerização Proteica , Células RAW 264.7 , Ratos Sprague-Dawley , Receptor 4 Toll-Like/química
20.
J Appl Toxicol ; 40(8): 1153-1161, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32162354

RESUMO

Early diagnosis of cantharidin-induced myocardial injury is the key to reduce the fatality rate in clinical practice. The purpose of the present study was to explore biomarkers that can be used for the prediction and diagnosis of cantharidin-induced myocardial injury. Of 65 male Sprague-Dawley rats weighing 200-230 g, 25 rats were divided into five groups according to the administration dose of cantharidin (0, 1.34, 2.67, 4 and 5.34 mg/kg; n = 5 per group) and the other 40 rats were treated with 2.67 mg/kg cantharidin and divided into nine groups according to the administration time (0, 1, 2, 4, 6, 8, 12, 24, 48 and 72 hours; n = 4 per group). Pathological changes of hypoxia, necrosis and inflammation were confirmed in heart samples that were exposed to cantharidin by hematoxylin-eosin staining and overall scores of pathological changes among heart samples in cantharidin exposure groups showed an increasing trend compared with in the control group. Coexpression of vascular endothelial growth factor (VEGF), hypoxia inducible factor-1α (HIF-1α) and caspase9 was shown in the myocardium by immunofluorescence staining. Western blotting results showed that expression of VEGF, HIF-1α and caspase9 in cantharidin-treated rat hearts showed an increasing trend compared with in the control group. Results of enzyme-linked immunosorbent assay suggested that plasma levels of troponin T (TN-T), VEGF and HIF-1α were elevated at different intervals after cantharidin administration, and VEGF and HIF-1α had a significant linear relationship with TN-T that was verified by multiple linear regression analysis. Preliminary results serve to illustrate that TN-T, VEGF and HIF-1α might be valuable molecular markers in cantharidin-induced myocardial injury and that diagnostic accuracy needs to be studied further.


Assuntos
Biomarcadores/sangue , Cantaridina/toxicidade , Cardiomiopatias/induzido quimicamente , Cardiotoxicidade/fisiopatologia , Troponina T/efeitos dos fármacos , Fatores de Crescimento do Endotélio Vascular/efeitos dos fármacos , Animais , Cardiomiopatias/fisiopatologia , Relação Dose-Resposta a Droga , Hipóxia/induzido quimicamente , Hipóxia/fisiopatologia , Inflamação/induzido quimicamente , Inflamação/fisiopatologia , Masculino , Necrose/induzido quimicamente , Necrose/fisiopatologia , Valor Preditivo dos Testes , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...